最新消息

2024 11 / 29
利用 Alphalens 做因素分析-以放空因子為例(II)! — TEJ 量化投資月報 8 期

在進行量化交易前,投資者往往需要進行大量分析來確保策略的可行性。然而,在資訊量爆炸的情況下,資料處理與分析工作既耗時又繁瑣,對於新手來說即使是起點也是居高不下。 而 TQuant Lab 中的 Alphalens-tej 套件就是一個因素分析的工具!若能妥善運用便可大幅降低資訊的消耗。 ...

2024 11 / 22
程式交易指南:如何利用 TQuant Lab 策略結合永豐 API 進行自動化下單

程式交易真的那麼遙不可及嗎?事實上,台股的程式交易份額以年增 20% 的速度逐年上升,本文也將和大家介紹永豐金證券推出的程式交易 API:Shioaji,其使用原生 Python 環境打造的生態系統使程式碼易於撰寫,也使永豐 API 佔有台股程式交易約一半的份額。本文將帶大家透過 TQuant La...

2024 11 / 15
用 Alphalens 剖析因子表現,外資因子篇

本系列文章將利用 Alphalens 來探索幾個關鍵的因子,逐步分析不同的因子對市場表現的影響。第一篇文章聚焦於「外資資金」,解析國外資金進入市場所帶來的影響;接著,我們將探討「價值因子」,並研究其如何反映企業的內在價值;最後一篇將深入分析「價量因子」,以揭示價格與交易量之間的互動關係。 ...

TQuant Lab
三大特點

以全台最完善的資料品質與內容,搭配最強大的事件驅動型回測系統,提供使用者開發與策略驗證的絕佳工具

瞭解更多
模組化建構您的策略

模組化架構讓程式碼在撰寫時高度自由化,可將策略步驟化處理,同時處理多重標的買賣,並完整呈現策略績效與風險指標

龐大且高品質的資料庫

完整且即時的資料庫系統,經過層層把關與維護,讓您的回測績效不失真

強大、嚴謹的回測分析套件

四大 Python 分析工具,並提供多樣化參數讓您調整,全方位模擬市場交易環境,提升分析結果的可信度

產品內容介紹

TQuant Lab 一站式的量化研究平台

提供全台最完整的 PIT 量化資料庫和資料歸納工具(TEJ Tool API),搭配專業的因子分析工具、全方面的策略回測引擎和詳細的可視化報表呈現,通通一站式解決,劍指成為使用者在量化投資之路上的一大利器。
*PIT(Point In Time):過去歷史當下所能取得的最新資料,若使用錯誤資料恐造成前視偏誤問題,即策略績效將嚴重失準。

TQuant 資料集

提供台股在過去每個時點的資料,避免使用到未來資料進行回測,可有效避免前視偏誤問題

TEJ Tool API

整併各項資料集中不同頻率之資料,讓使用者能夠同時運用季、月和日頻率資料產出進出場訊號

擬真量化回測引擎

事件型回測引擎,全方位模擬市場真實的進出場環境,減少策略實際運行的誤差

專業的因子分析工具

因子分析工具,用以剖析單一因子的報酬率、資訊比率和週轉率情況等等

可視化報表呈現

策略績效分析工具,一鍵產出眾多績效指標並視覺化圖表,快速掌握策略的優缺點

TQuant Lab 獨家功能

  • TEJ 採用 Quantopian 公司所提供的 Zipline 套件,修改成符合台灣金融市場交易的回測引擎,經過多年發展,已是國際常用的量化平台基礎回測架構
  • 由 TEJ 專業量化分析團隊維護,不定時推出專屬的新功能,可同時回測股票與 ETF 等多種商品
  • 回測時,日誌自動顯示投資組合每日持有股票之各項紀錄,包含現金股利、股票股利等資訊,貼合市場真實情境

 

TQuant Lab

 

# TEJ獨家開發的輕量化 Zipline 回測引擎,最少僅需輸入您的策略建構式 pipeline 即可回測,亦可客製化各項參數
from zipline.algo.pipeline_algo import *

algo = TargetPercentPipeAlgo(
start_session=start_dt,
end_session=end_dt,
capital_base=1e6, 
tradeday=tradeday,
max_leverage=0.80,
slippage_model=slippage.VolumeShareSlippage(volume_limit=0.15, price_impact=0.01), 
pipeline=compute_signals,
analyze=analyze
)

results = algo.run()

參與試用

免費註冊 TQuant Lab 會員申請試用資格