最新消息

2025 10 / 23
黃金交叉期貨交易策略(MTX)

移動平均線(Moving Average, MA)的思想源於 20 世紀初的 道氏理論(Dow Theory)。道氏理論強調市場具有趨勢性,且趨勢可透過價格本身來觀察,但早期價格資料波動劇烈,缺乏平滑工具。分析者因此開始利用一段期間的平均價格來減少隨機雜訊,這便是移動平均線的濫觴。 ...

2025 10 / 16
市場恐慌還是機會?從融資維持率看穿轉折訊號

融資維持率(Maintenance Margin Ratio)是市場上用來衡量融資賬戶風險狀況的重要指標,可以用來判斷投資者是否接近券商發出追繳通知的門檻。因為投資人在進行融資交易時,券商通常會設定「融資維持率」作為追繳保證金(Margin Call...

2025 09 / 26
【TQuant 從 0 到 1 - Day 5】 TQuant Lab 回測系統下單方式介紹

在 TQuant 回測與實盤交易中,下單函數是策略與資金管理的樞紐。選對下單方法不僅能讓程式碼更簡潔易讀,還能提升風險控管與組合再平衡的效率。TQuant ...

TQuant Lab
三大特點

以全台最完善的資料品質與內容,搭配最強大的事件驅動型回測系統,提供使用者開發與策略驗證的絕佳工具

瞭解更多
模組化建構您的策略

模組化架構讓程式碼在撰寫時高度自由化,可將策略步驟化處理,同時處理多重標的買賣,並完整呈現策略績效與風險指標

龐大且高品質的資料庫

完整且即時的資料庫系統,經過層層把關與維護,讓您的回測績效不失真

強大、嚴謹的回測分析套件

四大 Python 分析工具,並提供多樣化參數讓您調整,全方位模擬市場交易環境,提升分析結果的可信度

產品內容介紹

TQuant Lab 一站式的量化研究平台

提供全台最完整的 PIT 量化資料庫和資料歸納工具(TEJ Tool API),搭配專業的因子分析工具、全方面的策略回測引擎和詳細的可視化報表呈現,通通一站式解決,劍指成為使用者在量化投資之路上的一大利器。
*PIT(Point In Time):過去歷史當下所能取得的最新資料,若使用錯誤資料恐造成前視偏誤問題,即策略績效將嚴重失準。

TQuant 資料集

提供台股在過去每個時點的資料,避免使用到未來資料進行回測,可有效避免前視偏誤問題

TEJ Tool API

整併各項資料集中不同頻率之資料,讓使用者能夠同時運用季、月和日頻率資料產出進出場訊號

擬真量化回測引擎

事件型回測引擎,全方位模擬市場真實的進出場環境,減少策略實際運行的誤差

專業的因子分析工具

因子分析工具,用以剖析單一因子的報酬率、資訊比率和週轉率情況等等

可視化報表呈現

策略績效分析工具,一鍵產出眾多績效指標並視覺化圖表,快速掌握策略的優缺點

TQuant Lab 獨家功能

  • TEJ 採用 Quantopian 公司所提供的 Zipline 套件,修改成符合台灣金融市場交易的回測引擎,經過多年發展,已是國際常用的量化平台基礎回測架構
  • 由 TEJ 專業量化分析團隊維護,不定時推出專屬的新功能,可同時回測股票與 ETF 等多種商品
  • 回測時,日誌自動顯示投資組合每日持有股票之各項紀錄,包含現金股利、股票股利等資訊,貼合市場真實情境

 

TQuant Lab

 

# TEJ獨家開發的輕量化 Zipline 回測引擎,最少僅需輸入您的策略建構式 pipeline 即可回測,亦可客製化各項參數
from zipline.algo.pipeline_algo import *

algo = TargetPercentPipeAlgo(
start_session=start_dt,
end_session=end_dt,
capital_base=1e6, 
tradeday=tradeday,
max_leverage=0.80,
slippage_model=slippage.VolumeShareSlippage(volume_limit=0.15, price_impact=0.01), 
pipeline=compute_signals,
analyze=analyze
)

results = algo.run()

參與試用

免費註冊 TQuant Lab 會員申請試用資格